Embedding into Rectilinear Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding into Rectilinear Spaces

We show that the problem whether a given finite metric space (X, d) can be embedded into the rectilinear space R m can be formulated in terms of m-colorability of a certain hypergraph associated with (X, d). This is used to close a gap in the proof of an assertion of Bandelt and Chepoi [2] on certain critical metric spaces for this embedding problem. We also consider the question of determining...

متن کامل

Embedding into the rectilinear grid

We show that the embedding of metric spaces into the l1-grid Z can be characterized in essentially the same fashion as in the case of the l1-plane R . In particular, a metric space can be embedded into Z iff every subspace with at most 6 points is embeddable. Moreover, if such an embedding exists, it can be constructed in polynomial time (for finite spaces) . q 1998 John Wiley & Sons, Inc. Netw...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Banach Spaces Embedding Into

Our main result in this paper is that a Banach space X embeds into L, if and only if l~(X) embeds into Lo; more generally if 1 _-< p < 2, X embeds into Lp if and only if lp (X) embeds into L~,.

متن کامل

embedding normed linear spaces into $c(x)$

‎it is well known that every (real or complex) normed linear space $l$ is isometrically embeddable into $c(x)$ for some compact hausdorff space $x$‎. ‎here $x$ is the closed unit ball of $l^*$ (the set of all continuous scalar-valued linear mappings on $l$) endowed with the weak$^*$ topology‎, ‎which is compact by the banach--alaoglu theorem‎. ‎we prove that the compact hausdorff space $x$ can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1998

ISSN: 0179-5376

DOI: 10.1007/pl00009370